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Abstract. Off-chain protocols are a promising solution to the cryp-
tocurrency scalability dilemma. It focuses on moving transactions from
a blockchain network like Ethereum to another off-chain system while
ensuring users can transact with assets that reside on the underlying
blockchain. Several startups have collectively raised over $100m to imple-
ment off-chain systems which rely on a validating bridge smart contract
to self-enforce the safety of user funds and liveness of transaction execu-
tion. It promises to offer a Coinbase-like experience as users can transact
on an off-chain system while still retaining the underlying blockchain’s
security for all processed transactions. Unfortunately, the literature for
validating bridges is highly disparate across message boards, chat rooms
and for-profit ventures that fund its rapid development. This System-
atization of Knowledge focuses on presenting the emerging field in an
accessible manner and to bring forth the immediate research problems
that must be solved before we can extend Ethereum’s security to new
(and experimental) off-chain systems.

1 Introduction

Cryptocurrencies have risen to a market capitalisation of over $2 trillion in less
than 12 years with Bitcoin and Ethereum making up more than 60% of the mar-
ket. Yet, the scalability of both networks remains the same at around 15 trans-
actions per second and it is not uncommon to witness users paying thousands of
dollars in fees [50]. A promising approach for scaling blockchain networks, off-
chain protocols, is a solution that can immediately be applied without changing
the underlying blockchain protocol. To scale, it focuses on moving transactions
from a blockchain network like Ethereum to another off-chain system while en-
suring users can transact with assets that reside on the underlying blockchain.

Since 2015, state channel networks have been the focal point for off-chain
protocol research and development. The most significant implementation is the
lightning network with over 2,300 BTC locked (September 2021) and over the
years research has focused on channel constructions [32,30,72,46,5,71,26] and
the routing problem [7,36,66,56,90,55,70]. However, it has become apparent that
state channel networks excel at routing value and instant synchronisation in an
off-chain manner, but it is not an ideal platform for user interaction. Some rea-
sons include requiring every user to open a new state channel via the underlying



blockchain, inbound capacity limits when receiving funds and a user’s funds are
at risk if they go offline for an extended period of time.

This paper expands upon the work of [48] which explored an emerging off-
chain approach called commitchains which allows an operator to run an off-chain
system while still retaining underlying blockchain’s security. We focus on the
cornerstone of a commitchain’s security, the validating bridge contract, which is
tasked with upholding the safety and liveness for the off-chain system especially
if the operators turn out to be malicious. As we will see, this off-chain system
can have its own set of operators, smart contract environment, blockchain scal-
ability protocol and most importantly a widely replicated database that can be
independently computed by any external party. The motivation for our SoK is
to collect the rapidly emerging literature as it is still highly disparate across
message boards, chat rooms, and for-profit ventures that fund its rapid devel-
opment.3 We focus on presenting the field of validating bridge research in an
accessible manner and to bring forth the immediate research problems for the
community to tackle. Our contributions are the following:

– We present an overview of the roles involved in a validating bridge, the
security goals to build a secure validating bridge, and the known solutions.

– We provide a discussion on the various issues that have arisen with the design
of validating bridges over the years and present a list of relevant research
problems for researchers to tackle,

– We evaluate the state-of-art implementations to present their design choices,
financial cost of operation, and future direction.

2 Key concepts

2.1 Globally replicated database

Append-only log and database state All blockchain-based systems aim to globally
replicate an append-only log to record the ground truth. Anyone with a copy of
the blockchain can independently compute the network’s database and validate
its correctness. A block producer has the authority to propose a new block of
transactions that can be appended to the log and it is up to the set of verifiers
(users) to validate the block’s correctness before accepting it into the canonical
chain (blockchain).

Inside a block, each transaction decodes the sender’s account, receiver’s ac-
count, the value to be sent and a payload. This payload may contain a set of
conditions that must be true for the overall transaction to succeed. It can be
a script, bytecode to instantiate a smart contract (program) or instructions on
how to execute a smart contract. To a certain extent, a transaction represents
an atomic state update to the database that is re-executed by all verifiers.

Most databases in blockchain networks use a simple key-value method to
store data and the database state can be encoded or represented in many ways.

3 Several projects have collectively raised over $160m in the pursuit of deploying val-
idating bridges and off-chain systems.

2



In Ethereum-like systems, the key is an address (public key or smart contract
identifier), the value is the quantity of ether and optionally smart contract state
(and bytecode).

2.2 Smart contracts and bridges

Trusted bridge contracts A bridge contract is responsible for accepting deposits
from users and notifying an off-chain system to mint the same number of coins
for the user. To keep it simple, this functionality can be summarised as deposit,
withdraw and update account balance. The security of funds held by the bridge
contract ultimately depends on the update account balance functionality and
how the bridge is convinced about the user’s new balance before a withdrawal
transaction can be processed. We have witnessed three type of trust assumptions
emerge for bridge contracts:

– Single organisation. One party has the authority to update the user’s balance
in the bridge contract. An example is a cryptocurrency exchange.

– Multi-organisation. A set of independent parties (K of N) can notify the
bridge about a user’s new balance. An example is the federation bridge used
by Liquid [75].

– Crypto-economic. A dynamic set of parties, appointed by their weight in
assets, can notify the bridge about a user’s new balance. An example is
the Polygon bridge that requires (2/3)+1 of staked assets to approve all
notifications to the bridge contract [27].

In all cases, the bridge contract is only used to automate the withdrawal
process for users and it cannot enforce, or even inspect, the off-chain system’s
integrity. The organisation is responsible for protecting deposits held by the
bridge contract and if they are compromised for whatever reason, then the funds
are at risk [31]. As we have witnessed over the years, custody of user funds in
cryptocurrencies is increasingly becoming a liability for organisations [15,73].

We believe the above style of bridge contracts have emerged as protocols
assume the other blockchain system is secure. If we can assume it is secure,
then the goal is to minimise trust on how to relay information about the other
blockchain’s state to the bridge contract. As we will see with the introduction
of a validating bridge contract, it changes the above assumption as it assumes
the off-chain system may be compromised and its role is to protect the bridged
assets (even if all operators are malicious).

3 Validating bridge overview

The validating bridge contract is tasked with protecting the integrity of the
widely replicated database and liveness such that a proposed state update will
eventually be applied to the database. Figure 1 presents an overview of a vali-
dating bridge and it has two components:
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Fig. 1: An overview of a validating bridge and the agents that process transac-
tions for the off-chain system’s database (fraud-proof system).

– Off-chain system A system with its own appointment protocol, smart con-
tract environment, and a widely replicated database that anyone can inde-
pendently recompute.

– Chain of commitments (commitchain) Periodic commitments about the off-
chain system’s database state and the bridge must be convinced that all state
updates to the database are valid before it can accept a new commitment.

An organisation is still responsible for optimistically running the off-chain
system. They must periodically propose a new cryptographic commitment that
asserts the new state of the database and be prepared to defend their assertion
by providing evidence for why it is valid. The bridge contract can leverage the
potential evidence as a basis for a proof of fraud (discrepancy detection) or a
validity proof (discrepancy prevention) before accepting the commitment.

The validating bridge must be convinced the commitchain is not compro-
mised and every state update applied to the database is valid before it permits
any funds to be withdrawn. As such, an off-chain system that is built with a
validating bridge is considered a scaling solution as users can transact on an off-
chain system with assets that reside on the underlying blockchain while retaining
the underlying blockchain’s security.

3.1 Agents and protocol assumptions

We consider the agents, the protocol assumptions about the underlying blockchain
which hosts the bridge contract and the adversary’s power on the off-chain sys-
tem.

4



Agents We assume there is an honest user who wants to transact on the off-chain
system and they lack the computational resources to verify it in real-time. Figure
1 identifies three agents when assessing the security of a validating bridge:

– Sequencer One or more agents who propose an ordered list of transactions to
the bridge contract. They are privy to the pending transactions that will soon
be confirmed and are in a position to offer information about the pending
state of the off-chain system’s database (including account balances, smart
contract state, etc).

– Executor One or more agents who propose the final execution result for a
batch of transactions by posting state commitments to the bridge contract.

– Challenger One or more agents with the computational resources to validate
commitments proposed by the executors. This requires the agent to process
every state update to the widely replicated database and this role is only
required if the validating bridge requires assistance.

Protocol assumptions We only consider protocol assumptions for the underlying
blockchain that is hosting the bridge contract.

– Blockchain neutrality Block producers of the underlying blockchain are not
colluding with the sequencers, executors or challengers.

– Eventual delivery An honest user’s transaction will be mined in the under-
lying blockchain within N blocks if it pays an appropriate network fee.

– Constrained smart contracts A smart contract is considered a trusted third
party with a public state. It is immutable and it cannot be compromised as
it shares the same security as the underlying blockchain. It has considerably
less resources in terms of computation, bandwidth and storage than the off-
chain system.

Threat model We assume an adversary can corrupt all sequencers and executors,
but they cannot manipulate the challenger, bridge contract or honest user. The
adversary can control the flow of messages on the off-chain system such that
they can view, order and censor all messages. Due to the blockchain neutrality
assumption, the sequencer cannot prevent the delivery of messages to the bridge
contract. Finally, we assume the adversary cannot break standard cryptographic
protocols or primitives.

3.2 Protocol goals

We outline goals that an off-chain system implemented with a validating bridge
contract should try to achieve.

Operator goals It should be feasible for anyone to deploy a new off-chain instance
with a validating bridge and we consider desirable goals for such an operator:

– No collateral to operate Sequencers and executors do not necessarily have to
lock in any collateral to run the off-chain system or to onboard new users.
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– Operational cost efficiency It should be cost-effective for the bridge contract
to verify the integrity of an off-chain system.

– Unrestricted experimentation The off-chain system’s protocol can experiment
with new blockchain protocols, smart contract environments, and governance
models. It should not be restricted due to the underlying blockchain’s capa-
bility.

– Proof of reserves It is publicly verifiable that the off-chain system is fully
collateralized (or running a fractional reserve).

User-experience goals The off-chain system should offer a Coinbase-like experi-
ence while allowing users to enforce self-custody of their funds:

– No on-chain registration A new user can receive funds and interact with
smart contracts in the off-chain system without pre-registering on the un-
derlying blockchain.

– No transfer limit There is no restriction, except for a user’s balance, in terms
of the total coins that they can send and receive.

– Transaction post-condition’s enforced A user’s transaction will only be exe-
cuted if a defined post-condition is satisfied.

– Validate pending database state A user is assured about the pending database
state for the off-chain system before authorising their transaction.

Security properties We outline what it means for a bridge contract to verify the
integrity of an off-chain system. It can be broken into three goals:

– Data availability problem The bridge contract can verify the data is publicly
available such that anyone can recompute the database independently.

– State integrity problem The bridge contract is convinced that all transactions
executed in the commitment are valid and the commitment represents a valid
new state of the database.

– Censorship resistance The bridge contract can enforce the eventual order-
ing and execution of transactions to ensure users can always unwind their
positions and withdraw their funds.

3.3 Protocol overview

This overview presents the common features and protocol steps that all validat-
ing bridges (and off-chain systems) share. It includes the chain of state commit-
ments, deposits, transacting on the network, how the bridge contract finalises
transactions and finally how a user can withdraw their coins.

Periodic state commitment The state commitment is a cryptographic commit-
ment and it may have several sub-commitments:

– Off-chain system’s database state. All account balances and smart contract
state.
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– List of transactions. An ordered list of transactions that is applied to the
off-chain system’s database.

– Intermediary state transitions. For each transaction, it includes the pre-state
of the database before it is executed, a set of instructions for executing the
state transition and the post-state of the database after it is executed.

Deposit funds To move funds onto the off-chain system, a user will deposit coins
into the bridge contract on the underlying blockchain. The off-chain system will
mint an equal number of coins for the user when the deposit transaction is
processed by a future state commitment in the bridge contract.

Transacting on the network The sequencer is the portal to the off-chain system
and they offer the following services to an honest user:

– Fast-path transaction inclusion They collect user-generated transactions that
are destined for the off-chain system and propose the final order of execution
for the bridge contract.

– Information about the off-chain state They are privy to the database’s pend-
ing state and can offer up to date information about the state of smart
contracts.

Decoupling transaction ordering and execution The bridge contract can separate
the process of finalising a transaction into two parts:

– Ordering of transactions. Both the sequencer and user can submit transac-
tions to the bridge contract which determines the final order of transactions
for execution.

– Execution of transactions. The executor must submit a state commitment
that represents the final execution result of the ordered transactions.

A bridge contract should only finalise the state commitment if it is convinced
that all state transitions are valid (i.e., state transition integrity problem) and
if the state updates are publicly available (i.e., data availability problem) to
allow a challenger to independently compute the off-chain system’s database. Of
course, depending on the validating bridge contract, the ordering and execution
of transactions can be a combined process or performed sequentially.

Withdraw funds An honest user can sign a withdrawal request transaction and its
execution should eventually be processed by the bridge contract. The withdrawal
request destroys coins on the off-chain system and informs the bridge contract
about the user’s entitlement to withdraw their coins back to the underlying
blockchain. In most validating bridge contracts, the user has a potential-claim
to coins held by the bridge contract and at withdrawal time the user may receive
any set of the coins (i.e., coins have no serial number or unique features).

7



4 Sequencer and executor profile

We consider how sequencers and executors are appointed to their role, the trans-
acting ordering protocol that governs which data is sent to the bridge contract,
and how sequencers can provide assurance about the pending state of the off-
chain system’s database.

4.1 Rate-limiting and decision making

Purpose of rate limiting The concept of rate limiting is to restrict who can
become a sequencer or an executor. In the case of a sequencer, it is a user-facing
role as they collect user-generated transactions and order them for execution.
Only agents who may offer an exceptional user experience should be selected
to become sequencers and it should not consider the enforcement of censorship-
resistance.4 On the other hand, the executor focuses on eventual execution of
transactions in the off-chain system. They are entrusted with a liveness property
that impacts transactions waiting to migrate from this off-chain system to the
underlying blockchain. The rate-limiting mechanism used to restrict who can
become an executor should guarantee that at least one executor can self-appoint
themselves to execute a significant portion of the pending transactions.

Appointment protocol The bridge contract needs to verify who is a member of
the sequencer and the executor set. Assuming both agents are not pre-installed,
then the bridge contract may implement an appointment protocol to allow new
members to participate. Several appointment protocols may emerge and two
include:

– Delegated vote A set of users can vote to appoint a member to become a
sequencer (or executor) based on their weight in tokens (or another voting
mechanism).

– Weighted stake Any user can stake funds in the bridge contract and self-
appoint themselves to a role.

Transaction ordering protocol We need to consider how the set of sequencers
reach a decision on how to order the pending list of transactions. A non-exhaustive
list includes:

– Single agent A single sequencer decides the final ordering of transactions.
– Round robin The bridge contract provides a series of slots and each agent

will decide the order of transactions in turn. A slot can be a fixed period of
time and if the slot is missed, then it will move onto the next agent.

– Majority vote A threshold of agents must reach agreement about which data
to send the bridge contract. It may be implemented as a PBFT-like protocol.

4 Section 5.3 discusses how the bridge contract can self-enforce the inclusion of trans-
actions for ordering. A sequencer cannot censor a transaction.
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4.2 Information about the off-chain system’s state

The off-chain system may have a public peer-to-peer network and gossip pro-
tocol for propagating new pending transactions. It does not necessarily inform
a user about the next batch of transactions to be ordered by the sequencer for
execution. As such, the sequencer is privy to the soon-to-be-ordered transactions
and the pending state of the widely replicated database. The user can request
this information before deciding to transact and the sequencer can offer assur-
ance about how the user’s transaction will be executed. This section focuses
on the trust assumptions (and how to reduce trust) for when the user requests
information from the sequencer about the off-chain system’s state.

Trusted sequencer The sequencer is blindly trusted to provide assurances about
transactions and off-chain state to the users. Users can only check if the sequencer
was honest after the bridge contract has processed the transactions.

Transaction receipt The sequencer provides a signed receipt to the honest user
with details about their transaction. It may, although not mandatory, include
a signed promise to include the transaction, the transaction’s position in the
queue, and the transaction’s expected execution. The user can verify whether
the sequencer has adhered to the receipt by following the messages sent to the
bridge contract. If the sequencer does not adhere to the receipt’s promise, then
the user can send this receipt to the bridge contract and punish the sequencer
(i.e., slash their stake).

Temporary fact-blocks The sequencer can publish a fact block, where a fact is
the final execution for a batch of transactions. A chain of fact blocks can be sent
to the bridge contract or broadcast across a gossip protocol (where anyone can
then publish it on-chain). Fact blocks are considered temporary as the canonical
chain and the final ordering of fact blocks is decided at a later stage by another
process, but it provides some off-chain assurance about the final execution of a
user’s transaction [35].

Maximal Extractable Value (MEV) All transactions are ordered and eventually
executed based on the total extractable value that profits the sequencer [76].
A simple example is a sandwich attack where the sequencer inserts a front-
running and back-running transaction around a user’s swap transaction [29].
This allows the sequencer to steal any positive slippage from the trade that
would otherwise go to the user. Extractable value is possible as the sequencer has
the authority and time to reorder all transactions to find the best combination
that maximises their profit. Unlike the other approaches, the sequencer may not
promise to eventually order a user’s transaction for execution. As well, because
the sequencer has not yet decided the final transaction ordering, they may not
have information about the pending state of the database.
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Fair-ordering protocols This assumes a set of sequencers cooperate to decide the
ordering of transactions via a fair-ordering consensus protocol based on a criteria
of fairness. The only proposed protocol for fair-ordering in a byzantine setting
[53] defines fairness as ordering transactions based on the arrival timestamp of a
transaction to the set of sequencers. To decide the final ordering of transactions,
all sequencers participate in a majority vote protocol based on the transaction’s
timestamp. The goal is to prevent a threshold of sequencers from impacting
the ordering of transactions for their own gain. Another approach is to pursue
a commit-and-reveal approach where the user submits a commitment of their
transaction and only reveals the transaction after it is ordered [88].

5 Bridge contract security goals and solutions

We outlined the security goals for the bridge contract in Section 3.2 which in-
cludes data availability, state transition integrity and censorship resistance. To-
gether, the goals ensure an honest user only needs to trust the bridge contract to
protect their funds against a malicious off-chain system. In this section, we ex-
plore potential solutions to each security goal in order to get as-close-as-possible
to retaining the underlying blockchain’s security

5.1 Data availability

It is up to the bridge contract to ensure the data is publicly available before a
commitment is considered final. This data can be the list of state updates, a list
of transactions, or simply the new state of the off-chain system’s database. We’ll
simply call it data for the rest of this section. Outside of allowing a challenger
to check the validity of all previous commitments, data availability is necessary
to allow an honest user to verify when a transaction is finalised and to obtain
evidence that can convince the bridge contract that a withdrawal transaction can
be processed. So far, there are four solutions to the data availability problem:

Trusted party or committee A threshold of parties will sign a message to vouch
that the data is publicly available. The signatures are verified by the bridge
contract before the commitment is accepted. This approach was implemented in
StarkEx [93] and Oasis [96].

On-chain data availability challenges Every commitment initiates a challenge
process for a fixed period of time. An honest user has time to return online and
verify the data is publicly available (and download it). If the data is not publicly
available, then the user can challenge the sequencer via the bridge contract to
reveal the requested data. The commitment is discarded by the bridge contract
if the sequencer does not reveal the data by the challenge period’s expiry time.
This approach was proposed for NOCUST [57] and variants of Plasma [17].
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Wait for data availability in a fixed-claim system The following solution only
works in a fixed-claim system such that there is a one-to-one matching of coins
held by the bridge contract. Every coin is associated with a single entry in the
off-chain system’s database (i.e., each coin has a unique serial number). Instead
of checking the integrity of the entire database, the honest user only needs to
check the integrity of state updates for the single entry in the database. As
a result, the honest user only needs to obtain the history of updates for this
database entry and check that it is indeed valid according to the historical on-
chain commitments. From that point onwards, assuming the user has transferred
the coin and they can verify its entire history, then the user does not need to
consider the data for any future commitment.

To withdraw a coin, an honest user will provide evidence to the bridge con-
tract that they are the assigned owner of the coin (and database entry). This
initiates a withdrawal challenge process where the ownership claim can be tested
by any other user on the network. To falsify a withdrawal, another user can prove
the coin was already spent (i.e., the honest user has transferred it) or partici-
pate in an interactive-process to pinpoint an invalid transfer in the coin’s history.
This approach was proposed by Plasma Cash [60] and it solves the problem as
an honest user is only required to fetch the coin’s history up to the point in
which they received it. They can ignore all future commitments in regards to
checking for data availability.

Post to the layer-1 blockchain All data alongside the commitment is posted to
the bridge contract (rollup). This approach was proposed by Barry Whitehat
[105] and it has been adopted by most projects.

5.2 State transition integrity

The next step is to consider how the bridge contract can be convinced about the
validity of an asserted commitment. Specifically, a commitment will assert the
valid transition of the database based on the previously accepted commitment
and the list of transactions to be executed. There are two approaches:

– A fraud proof system. The bridge contract initiates a challenge process for
a commitment. This provides an opportunity for a challenger to submit
evidence if there is an invalid state transition and for the bridge contract
to reject the commitment. If there is no evidence of fraud by the time the
challenge expires, then the bridge contract accepts the commitment as final.

– A validity proof system. The executor must present evidence alongside the
commitment to prove that all state transitions are valid. There is no challenge
period and the bridge contract can accept the commitment immediately.

Pinpointing and re-executing disputed state transition A fraud proof system, of-
ten called an Optimistic approach, is effectively a form of lazy evaluation. The
challenger’s task is to pinpoint the disputed state transition and for the bridge
contract to check its validity by simply re-executing the state transition. This
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allows the bridge contract to independently determine whether the asserted com-
mitment should be rejected. There are currently two approaches for pinpointing
a disputed state transition:

– One-round fraud proof The challenger has the list of intermediary state
transitions for the asserted commitment and this is used to pinpoint the
disputed state transition. The challenger submits the disputed intermediary
state transitions alongside a list of inclusion proofs about the state transi-
tion’s pre-state, the state transition to execute, and the executor’s asserted
post-state after it is executed. Given this information, the bridge contract
can execute the state transition and compare the executed result with the as-
serted post-state. If there is a mismatch, then the commitment is considered
invalid and it is rejected.

– Multi-round fraud proof The list of intermediary state transitions for an
asserted commitment is not sent to the bridge contract and it is not trivial
to pinpoint an individual state transition in a single-round. Instead, the
challenger and executor must agree upon the total number of instructions
executed within the commitment and then perform a binary search until they
pinpoint the disputed instruction. Each step in the search involves one party
claiming the new state after the instruction is executed and the other party
must agree/disagree with it. If they agree, then all previous instructions
must be valid, otherwise they continue to search until the single disputed
instruction is identified.

Validity proof A validity proof is indisputable evidence that all state transitions
are correct. The naive approach involves the verifier re-executing all transactions
before accepting a new block (or state commitment) which is common for public
blockchain networks. This is not applicable for a validating bridge contract as it
is assumed to have significantly less computational resources than the off-chain
system. Another approach, implemented using zero knowledge proofs, allows the
prover to produce a proof of computational integrity (while hiding its inputs)
that every state transition for a given commitment is well-formed. This proof
can be verified with minimal computational or bandwidth resources (i.e., a few
milliseconds). It can be verified by the bridge contract, or anyone, to confirm
the commitment (and the off-chain computation) is indeed valid. On the other
hand, the downside of a zero knowledge proof is the computational burden placed
upon the prover, especially for generic computation, and it remains an active
engineering task to alleviate [51,34].

5.3 Censorship resistance

If the off-chain system is offline, halts or the operators are malicious, then a
censorship-resistance mechanism is essential to allow the user to still transact
and eventually withdraw their funds from the bridge contract.
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Forced transaction inclusion A cornerstone of censorship-resistance is the ability
to bypass the sequencer with forced transaction inclusion such that the user can
submit a transaction to the bridge contract and it will eventually be ordered
for execution. We call it the slow path for transaction ordering and as such the
sequencer’s role has little impact on censorship-resistance. Instead, we need to
consider the set of executors as they are entrusted with the liveness of execution
and the complexity of transactions on the off-chain system.

Value-transfer’s escape hatch This assumes the off-chain system only supports
value-transfer and smart contracts do not have a balance. In this case, forced
transaction inclusion is sufficient to enforce censorship-resistance as the bridge
contract can order the user’s transaction for execution and freeze the entire off-
chain system if it is not executed in a timely manner. If the system is frozen,
then it can activate an escape hatch and allow all users to simply withdraw their
balance via an on-chain exodus.

Smart contract functionality and enforced liveness This assumes a smart contract
in the off-chain system can have a positive balance (i.e., hold funds on behalf of
users). In this case, the user may need to perform several transactions to unwind
their position in a smart contract before they can issue a withdrawal request.
If we tried to use the escape hatch mechanism, then the user’s funds may still
be locked in the smart contract and the only solution is to withdraw the entire
smart contract (and its state) to the underlying blockchain. This is not a feasible
option as the smart contract may be larger than what can be instantiated on
the underlying blockchain.

Another approach is to rely on the bridge contract to ensure that all trans-
actions will eventually execute. Some mechanisms that can be implemented in-
clude:

– Permissionless set of executors. An honest party should have the ability to
self-appoint themselves to become an executor.

– Opportunity to post commitment. The bridge contract’s fork-choice rule for
deciding which commitment to accept should not discriminate against the
honest party.

– Minimum computation requirement. The bridge contract should require ev-
ery state commitment to process a minimum number (or percentage) of
transactions.

– Staked executors. Rate-limit who can become an executor and to cover the
challenger’s cost for undoing malicious behaviour by the executor.

Overall, the censorship-resistance property for an off-chain system with smart
contract functionality is not as well studied compared to the data availability
or state integrity problem. As discussed in Appendix A, both Optimism and
Arbitrum use a combination of the above to achieve censorship-resistance, but
the analysis of how well it achieves this goal is design-specific. As well, there are
potential denial of service attacks which can only be alleviated by slashing as a
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deterrent. An outstanding research task is to define the individual security goals
that can be combined to achieve censorship resistance and to model the bridge
contract’s capabilities for upholding it.

6 Discussion

6.1 Evolution of the bridge contract

Data availability challenge and the rise of rollups Plasma [84] was the initial
approach for building a validating bridge contract. Its goal was to move band-
width, computation and storage from Ethereum to a Plasma network. Initial
designs proposed the challenge process as a solution to the data availability
problem and a fraud proof system for the state transition integrity problem.
While several projects attempted to implement Plasma including OMG [54],
Plasma Group [47] and Loom [23], it appears that a practical implementation
failed to materialize. This led to a growing consensus that a challenge process
for data availability hindered the implementation of Plasma and thus it was not
a practical solution [86]. The reasoning is twofold:

– Fisherman’s dilemma It is indistinguishable whether the sequencer withheld
data or if the user issued an unnecessary challenge. The sequencer can keep
data private and force the user to issue a challenge for data availability. Since
blame cannot be ascribed, the user must cover the cost for the sequencer’s
malicious behaviour.

– Process challenge limitations The bridge contract lacks the resources to pro-
cess all data availability challenges in a timely manner and as such users may
fail to force the sequencer to reveal their data. This can result in a mass-exit
as all users attempt to exit the off-chain system.

After the release of Barry Whitehat’s zkrollup [105,18], most implementations
have pursued publishing the transaction data onto Ethereum as the preferred
solution to the data availability problem. While it requires stronger assumptions
than outlined in Section 3.1 (i.e., the bridge contract now requires similar same
bandwidth as the off-chain system), it is considered the most workable solution in
the immediate term as bandwidth on Ethereum is considered the most abundant
resource compared to computation and storage [2].

Research question: Can we remove the data availability risk without posting
all data to underlying blockchain? Can the design of Plasma Cash assist with
this endeavour?

Mass exit A mass-exit (also known as mass-withdrawals) occurs when there is
a possibility that users will lose access to coins held by the bridge contract [84]
and it arises because a security property of the validating bridge was broken.
There are two type of risks that can lead to a mass-exit:

– Potential-claim risks This assumes an off-chain system where users have a
potential claim to coins in the bridge contract. If the state transition integrity
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property is broken, then the adversary may steal some coins from the bridge
contract and the remaining assets can no longer cover its liabilities (i.e.,
a fractional reserve). Not all withdrawals can be honoured by the bridge
contract and as a result users will race to withdraw their coins before others.

– Data availability risks It may become foreseeable that users will loose access
to the off-chain system’s database due to the data availability property be-
ing broken. This can prevent users withdrawing their funds via the bridge
contract as they cannot prove ownership of their coins. Users will race to
withdraw their funds before the situation arises when access to the data is
lost.

Off-chain systems that post all data to the validating bridge contract (rollups)
remove the data availability risk. A fraud proof system can only alleviate, but not
remove the potential-claim risk. This is because the bridge contract can accept
an invalid state transition if a challenger fails to submit a proof of fraud during
the challenge process. On the other hand, Plasma Cash (i.e., a fixed claim system
as discussed in Section 5.1) is the only fraud-proof system that can alleviate the
potential-claim risk as a failed challenge process only impacts the user associated
with the stolen coins. There is no potential-claim risk in a validity proof system.

Research question: A measurement study on the impact of a mass-exit on the
underlying blockchain and whether the closely related concept of an on-chain
exodus remains a viable option as the off-chain system’s database grows in size.

Data availability via committees While Ethereum has reduced the cost of posting
calldata to the blockchain [2], it remains the dominant cost to operate a rollup.
This has led to some projects introducing a stronger trust assumption to keep
data off-chain via a data availability committee including StarkEx (Validum)
[93] and ZkSync (zkPorter) [62]. If the committee does not reveal the data,
then it impacts the safety guarantees for a fraud-proof system as an honest
party lacks the data to challenge an asserted commitment. On the other hand,
if the data is accidentally lost, then it can impact the liveness of a validity-proof
system as the executors cannot produce new proofs.5 Be that as it may, the on-
going work for Ethereum is to better utilize the network’s bandwidth as rollups
offer a potential solution for sharded execution. This has led to a roll-up cen-
tric roadmap [20] with proposals to change the underlying blockchain in favour
of it becoming a data availability layer [1,33,16] with minimal computation.

Research question: Protocols for securely sharding data availability [22,1].

One-round vs multi-round fraud proof The core difference in the fraud proof
implementations appears to be the granularity of state transitions which im-
pacts whether it is cost-effective to post the list of intermediary state transition
commitments to the underlying blockchain.

In Optimism, the state transition is an entire transaction and as discussed in
Section B.2 it costs approximately 1,112 gas per transaction to post the inter-
mediary state commitment. All intermediary state commitments are sent to the

5 Historically, ripple lost the first 32k ledgers due to bug in the Ripple servers.[91].
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bridge contract and this allows a challenger to single-handedly pinpoint which
state transition should be executed by the bridge contract. No cooperation with
the executor is necessary and a valid commitment cannot be evaluated as invalid
by a fraud proof. A commitment including its dependents can be discarded if it
is proven to be invalid (alongside slashing the executor who proposed it).

In Arbitrum, every intermediary commitment covers a single instruction (op-
code). It is not cost-effective (and arguably infeasible) to post all intermediary
state transition commitments to the underlying blockchain. This necessitates
the multi-round bi-section protocol as the challenger must cooperate with the
executor to pinpoint the disputed state transition. After all, the challenger can-
not independently compute every intermediary state commitment if the asserted
state commitment is indeed invalid. It is possible for the bridge contract to be
convinced that a valid asserted state commitment is invalid and there are two
examples to illustrate it. First, an executor may fail to defend a commitment
because they do not finish the bi-sectional protocol. Second, if the adversary is
both the challenger and executor, then they can post a fake intermediary state
commitment during the bi-sectional protocol and the bridge contract will eval-
uate it as invalid. This is because the bi-sectional protocol can identify that one
party is malicious, but not that the other party is also malicious. As such, a
commitment is not rejected in Arbitrum and instead the challenger is turned
into a zombie. A commitment is only finalised if all non-zombie executors have
staked on it (and the challenge process has expired).

Research question: Can we design a single-round fraud proof system that
evaluates state transitions for instructions (opcodes)?

Transactions or state updates for scalability Bandwidth is a bottleneck for off-
chain systems that post data to the validating bridge contract as the underlying
blockchain’s bandwidth is shared amongst all projects who will compete for
the same scarce resource. The type of data used by the verifier to compute the
widely replicated database (Section B.1) will impact the bandwidth requirements
and it appears that validity proof systems are superior in terms of reducing
their on-chain footprint (alongside computation). This is because the operators
can aggregate multiple user-generated transactions into a single update and the
verifier does not need to re-execute every transaction before applying a state
update to the database. Given there are real-world implementations for both
systems and historical transactions on Ethereum, it is now feasible to produce
an objective measurement on the potential savings.

Research question: A measurement study to investigate the potential savings
in terms of bandwidth and computation of a validity system compared to re-
executing every transaction to compute the widely replicated database (fraud
proof system).

6.2 Sequencer and executor incentives

Network fee for transactions on the off-chain system The user is expected to
pick a network fee that will entice a sequencer to include their transaction in the
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fast-path. This network fee combines the financial cost for consuming resources
on the off-chain system and the fee for consuming resources on the underly-
ing blockchain. Plus it must take into account the risk of sudden congestion
and volatility of the underlying blockchain fee market as it may no longer be
economically viable to finalise it.

Fundamentally, this problem assumes the fee market relies upon a first-price
auction and the user’s proposed network fee only represents a single bid in the
auction. Based on our code inspection in Appendix A, Arbitrum is the only sys-
tem to replace the first-price auction with a fee model similar to EIP-1559 [102].
The user sets a max fee they are willing to pay, but all transactions pay a single
clearing price (base-fee). Separating the max fee and clearing price can provide
sufficient spread to accommodate for sudden rise in the underlying blockchain
fee.

Research question: Fee models (or protocols) to accomodate underlying
blockchain’s network fee volatility due to sudden congestion.

Sharing collected fees amongst the agents Assuming the sequencer and executor
are separate roles, then the protocol should fairly split the collected fees amongst
them. This may lead to the validating bridge collecting network fees into a pool
of funds and only pay out based on certain criteria such as proof of participation.

One issue that arises is the on-chain bounty problem. If multiple executors
submit a commitment to the bridge contract at the same time, then the bridge
contract needs to decide whether to reward the first executor or to split the
reward evenly. The former is not necessarily fair to other executors due to the
financial cost to participate and the latter can dilute the reward such that it is
no longer profitable to participate. This is a race-condition issue and should be
considered when deciding how to fairly share the reward.

A related problem is the ability for a sequencer to earn rewards via MEV
and this is not shared amongst the other parties as it cannot be detected by
the validating bridge. This undermines the network’s fee model as the sequencer
can earn significantly greater rewards compared to executors. Some research
has focused on splitting the sequencer’s role into a set of block proposers who
compete in an auction to pay a block builder to include their ordered list of
transactions [19,41]. It is expected that this approach may encourage proposers
to split the MEV profit with the executors.

Research question: A proposal for how to fairly distribute the network fee
amongst the agents in the off-chain system. Some directions of research includes
creating a market amongst the participants to pay upfront to earn rewards, to
introduce a network fee pool to split rewards, and to consider how to resolve the
on-chain bounty issue.

Verifier’s dilemma The security of a fraud proof system relies on challengers val-
idating every commitment and posting a proof of fraud if applicable. A dilemma
arises as challengers may stop checking for fraud and this may happen for sev-
eral reasons. For example, challengers may assume no one will commit fraud,
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they may get lazy as they assume other challengers are checking commitments
or it is simply not cost-effective as the on-going cost to check is greater than
the probability they’ll collect a bounty [67,38]. This raises the question whether
we can verify that challengers are continuously checking the integrity of new
commitments and what is the incentive for a challenger to continue checking if
they cannot collect a bounty because there is no instance of fraud.

Related work recommends incorporating a canary protocol [98,52,37] that
will sporadically issue invalid state transitions to test whether challengers re-
spond in a timely manner. Another approach, as implemented in Arbitrum, is
to combine the roles of challenger and executor. All executors must stake on
an existing asserted commitment before they are allowed to propose a new one.
This act of staking will put their funds at risk and they must be prepared to
defend any challenges from other executors. As such, it is expected the executor
will check if the commitment is valid before moving their fund onto it.

We should consider if it is necessary to solve the verifier’s dilemma in an
incentive-compatible manner and whether it is better to assume at least one
challenger will behave altruistically absent of an explicit reward [59]. This type
of behaviour can be seen in practice as users verify networks like Bitcoin and
Ethereum because they have a vested interest in its success. For example, they
may validate to protect their funds or it is simply a business model that is offered
as a service like Infura.

Research question: A study on financial incentives for the verifier’s dilemma
and whether it is necessary to design an incentive-compatible protocol for chal-
lengers.

Charging for on-chain transaction inclusion We consider how a fee can be
charged on the off-chain system for user-generated transactions which are or-
dered for execution via forced transaction inclusion (slow path). ZkSync and
StarkEx do not charge a fee as the user can only request a full withdrawal of
their funds. However, if an off-chain system supports smart contracts and arbi-
trary execution, then there is a potential denial of service attack. Transactions
ordered via forced inclusion may pay an unfair fee (significantly less) compared
to transactions included by the sequencer as it bypasses the off-chain system’s
fee auction mechanism. If the slow path allows a sender to pay significantly less,
then they can consume all available resources and delay the execution of other
transactions.

One solution deployed by Arbitrum is to change the fee model such that
there is a single clearing price paid by all transactions and any transactions sent
via the slow-path will pay the same fee. There are two potential issues with this
approach. First, it is important the sequencer cannot tamper with the fee charged
by the validating bridge contract as it may allow them to censor transactions
by increasing the clearing fee to a value that is unaffordable. Second, a user
(or a contract) may not have a balance on the off-chain system, but to support
composability of contracts they may want to issue a transaction destined for
the off-chain system via the bridge contract. Another solution implemented by
Optimism, albeit hacky in nature, is for the transaction sender to perform a
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useless, but expensive computation on the underlying blockchain as a way to
charge a fee.

Research question: A protocol to charge an appropriate network fee for on-
chain transaction inclusion that alleviates denial of service attacks, but upholds
censorship-resistance.

Is MEV a business model or an attack? Several retail-focused financial products
such as Robinhood and eToro do not offer an explicit fee for their users. They
make money by extracting value from their user’s transactions. For example, this
can be taking the spread of a trade or payment for order flow to market makers.
This is a form of MEV as they impact the execution of a user’s transaction to
maximise their profit.

The same extractable fee model can be applied to the off-chain system. It is
an optimisation problem for the sequencer (or a set of searchers [40]) to evaluate
a batch of transactions. In March 2021, Ethermine were making approximately
$1m a day from MEV bundles sent by searchers on the network and since then
over 85% of block producers on Ethereum are now extracting value with the
assistance of Flashbots [25]. To reduce the impact of MEV, a user can leverage
smart contracts to limit the total extractable value for their transaction. For
example, the user can set a post-condition that must be satisfied in order for
the transaction to succeed (and execute). This post-condition can limit the price
movement on a trade or simply require the user to receive a minimum number
of coins. The sequencer must abide by the user-defined limits to avoid failing the
transaction and reaping no rewards.

The counter-argument is that MEV should be considered harmful and ex-
ploitative [39]. Users may pay significantly more in fees than is necessary to
include their transaction in the off-chain system. If a transaction has an expiry
time, then the sequencer is incentivised to withhold it up to the expiry time
as opposed to processing it immediately if there is a chance the sequencer will
extract more value at a later time. In the end, there is a centralisation risk if a
small set of sequencers (or searchers) earn excess profits and out-compete other
off-chain systems.

Research question: An evaluation of the risks MEV poses to the off-chain
system’s stability and a comparison of the solutions to reduce it including the
option to smooth the MEV reward amongst the block producers.

Upgradability and community control All project’s have implemented an upgrade
path for their bridge contracts. There are several reasons to include admin-
like functionality such as the ability to implement new features (including gas-
efficiency savings), temporarily incorporate training wheels to prevent a zero-
day exploit [77], and to protect against future hard-forks on the underlying
blockchain that may impact the bridge contract [12]. Upgradability has led to
governance issues on who has the authority to propose (and confirm) an up-
grade. While the trust assumptions outlined in Section 2.2 remain relevant for
deciding which organisation can propose an upgrade, we suspect some projects
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will eventually issue a token and transfer governance control to the token hold-
ers. MakerDAO is a recent example of transferring power to the community and
away from the core team who deployed the system [69]. To reduce trust in the
upgrade process, we recommend a time-delay for locking in a new proposed up-
grade and only activating it after a fixed time period. This can provide time
for the community to audit the upgrade and withdraw their funds if any of the
security goals for the off-chain system are compromised.

Research question: A measurement study on the success of token-holders to
control the governance process of a smart contract-based project.

6.3 Cross-chain interoperability and asynchrony

One success behind smart contract platforms like Ethereum is the centralisation
of collateral and the composability of smart contracts. It is not uncommon for a
transaction to include a list of internal transactions that interact with different
smart contract applications (the DeFi lego blocks) and for the entire transac-
tion to revert if a single interaction fails. For example, a user may take a flash
loan, use the loan to maximise an arbitrage opportunity for a swap and the
transaction fails when repaying the loan as the arbitrage moment was lost. Mov-
ing transaction processing onto multiple off-chain systems threatens this atomic
composability as it fragments smart contract applications and collateral. It is the
same train-and-hotel problem faced by sharding [21] as booking a hotel should
only be successful if the train is booked (and vice versa). Our aim is to restore
composability for smart contracts that are instantiated on their own off-chain
system.6 or deployed on one (or more) off-chain systems7 Protocols that focus
on cross-chain communication [106] can help re-introduce atomic composability
which can be broken into message delivery and value transfer.

Asynchronous message delivery A message can be the state of a smart contract
at a certain time, an executable transaction, or simply transfer value. It is con-
sidered asynchronous as message delivery takes place over a period of time and
the delivery should be persistent (i.e., it is only delivered once to the receiving
contract). This is important when a smart contract will only execute a function
if it can verify whether an event, state, or transaction, has occurred on another
off-chain system. Some approaches include building a light-client smart contract
that can verify proofs which assert the inclusion of a transaction, event, or state
on the off-chain system like BTC Relay or the Rainbow bridge [85]. On the
other hand, trust can be distributed amongst a set of oracles who assert that an
event has occurred (and a fraud-proof system can be incorporated to penalise
dishonesty [24]). Finally, with the use of conditional transfers (hashed time-
locked contracts) it may be possible to transfer the message off-chain amongst
the parties who are also facilitating the transfer of value.

6 Reddit plans to deploy their own instance of Arbitrum [74].
7 Sushiswap is deployed on at least five blockchain networks [49].
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Research question: Repayment protocols synchronise value transfer across two
or more off-chain systems. Is it possible to synchronise time-dependent function
calls and events?

Liquidity providers The destination smart contract may not be concerned about
the authenticity of a message and it will execute a function as long as the sender
has sufficient funds. This has led to liquidity providers who will provide the
user with coins on the destination off-chain system. The most significant issue is
capacity as the liquidity provider cannot lend more coins than they own. There
are two approaches for alleviating this issue. First, the sender can split the
payment across multiple liquidity providers in an atomic manner [81,7]. Second,
users may invest in the receiver’s pool of funds and earn a yield from the fees
collected. To the best of our knowledge, there is no trust-minimized protocol for
the latter approach. We’ll cover two popular approaches which include repayment
protocols and burn/mint liquidity.

Research question: A protocol to allow users to invest in a pool of funds for
cross-chain transfers, but it minimises trust in the liquidity provider.

Repayment protocols A repayment protocol is when a liquidity provider sends
the user funds on the destined off-chain system if, and only if, they are eventually
repaid the funds. There are two types of repayment protocols:

– Immediate repayment The liquidity provider optimistically has immediate
access to the repaid funds after paying the user.

– Eventual repayment The liquidity provider must wait a period of time until
they have access to the repaid funds.

Atomic swaps represent an immediate repayment protocol. Both parties can
exchange coins on different off-chain systems. Neither party has to trust each
other and its atomicity can be enforced with the use of conditional transfers to
ensure both transfers will succeed. Swapping is not restricted to a single asset
type and the liquidity provider can absorb the exchange rate risk. This can in-
troduce a free American call option to lock-in an exchange rate [89]. On the flip
side, it is possible to extend the swap beyond two parties with state channel
networks. The sender can find a path that connects them with the destination
and this may involve multiple hops across several blockchain networks (includ-
ing off-chain systems). In fact, it is feasible for Bitcoin’s lightning network to
facilitate cross-chain swaps between off-chain systems that are anchored onto
Ethereum.

An eventual repayment protocol includes the credit-based MakerDAO [68]
proposal to alleviate the long withdrawal times for fraud proof-based validating
bridges. At a high level, an oracle opens a new debt vault on the underlying
blockchain that mints new coins (DAI). This vault will require the collateral
that props up the DAI to be locked in by an expiry time. The user must submit
a withdrawal transaction on the off-chain system that repays the vault and the
oracle will wait for this transaction to be ordered for execution by the bridge
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contract before sending new DAI to the user. While the oracle only has to trust
the off-chain system will eventually execute the withdrawal transaction, it is not
a fair-exchange protocol as the user cannot force the oracle to issue the coins.

Another example of an eventual repayment protocol includes the debit-based
approach proposed by the Hop Exchange [104]. It relies on set of bonders to
facilitate cross-chain transfers. There is a special smart contract on the destina-
tion chain that tracks payments by a unique identifier. A bonder will send the
user their requested funds on the destination chain (with the required unique
identifier) after the user has sent them funds on the source system. The user’s
transfer should include the same unique identifier and it will migrate via the un-
derlying blockchain to the destination chain. When the funds arrive, the smart
contract will verify whether the bonder has indeed paid funds to the user using
the unique identifier. If so, it will pay the bonder, otherwise it will refund the
user. As well, HOP protocol has set up automated market-maker liquidity pools
[103] on multiple blockchain networks to establish an exchange rate between an
asset with real-value (ETH) and a synthetic token (hETH). The goal is to allow
the synthetic token to represent liquidity and to create a financial incentive for
arbitrageurs to keep funds well-balanced across networks.

Research question: Repayment protocols that can synchronise a path of events
across two or more off-chain systems. This may offer a synchronous-like experi-
ence.

Burn and mint liquidity The liquidity provider can mint tokens on one off-chain
system and burn tokens on another off-chain system. This approach is only
viable if the token can be pegged to another asset that is valuable. Tether, a
stablecoin provider, already offers the stablecoin (USDT) on several networks
and mints/burns coins to blockchains where it is required [99]. We foresee that
an automated market maker’s liquidity pool can be used to ascribe real value
to a synthetic token. Assuming the synthetic token can be ascribed value, then
an external authority can burn (and mint) tokens across networks as a way
to transfer liquidity. The issue to mitigate is that the authority can mint an
unlimited number of tokens and potentially drain the liquidity pool. To the best
of our knowledge, this remains an outstanding research problem.

Research question: A trust-minimised burn and mint liquidity protocol that
protects users who provide collateral for the liquidity pools.

6.4 Comparing to related scalability solutions

State channels A channel allows a fixed set of parties to lock up funds, transact
by unanimously authorising the new state of the channel, and eventually redeem
the final agreed state on the underlying blockchain. If we consider the two party
case for a payment channel, then the respective state is the balance of both
parties and there is a fixed number of coins locked in the channel. To represent
a payment, both parties adjust the balance of each party and then mutually
sign it (alongside a mechanism to uniquely identify it as the latest agreed state).
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If one party is offline (or uncooperative), then the counter-party can initiate a
challenge process to submit a pre-authorised state and eventually withdraw their
funds. The immediate issues with payment channels include:

– In-bound and out-bound capacity issues. Each party can only receive up to
or send the total coins locked in the channel.

– On-chain transaction to join. Every party requires an on-chain transaction to
open a channel and subsequent channels to increase their inbound/outbound
capacity limits.

– Hot wallet risk. The signing key must be online for each party to sign new
payments.

– Online assumption. Each party must return online periodically to detect if
a challenge process was initiated and ensure the latest authorised state is
submitted as evidence.

– Lack of open-access smart contracts. Channels are constrained to a set of
parties and there is no protocol to allow external parties (outside the channel)
to participate in a smart contract.

There are additional issues that arise if we try to replicate an off-chain system
(similar to a validating bridge). The operator must allocate their coins to new
customer channels and this represents an opportunity cost if the customer then
decides not to transact. While payment channels reduce trust in the operator
such that the customer can redeem their current balance at any time, the collat-
eral requirements and quantity of on-chain transactions to maintain the system
result in practical limitations. In our view, payment channels excel as a solution
for interoperability (a repayment protocol) as opposed to building operator-run
off-chain systems.

Channel factories The concept of a channel factory aims to overcome the issue
of requiring subsequent transactions to increase channel capacity [13,82]. It re-
quires N parties to lock funds into a base-layer channel. They can unanimously
agree to spawn new channels on top of the base-layer and periodically refresh
the channels with different capacities and channel partners. The issue with the
factory approach is the need for all N parties to unanimously agree. If one party
is offline, then the factory must be closed and re-opened. It does not solve hot
wallet risk, the online assumption, or requiring an on-chain transaction to join
the system.

Sidechains The original sidechain paper proposed how to build a bridge con-
tract that locks bitcoins in Bitcoin and unlocks the bitcoins on another off-chain
system (as well as supporting its return). The construction relies on simplified
payment verification proofs (SPV) to facilitate a two-way peg as each system
must prove to the other system that the bitcoins are locked and ready to be
withdrawn on the other side. Unlike a validating bridge, the sidechain approach
assumes the off-chain system safety (integrity of its ledger) and liveness (con-
tinuous progress of confirmed transactions) is outside the scope of the bridge
contract. As such, the sidechain’s bridge contract can verify the state of the
off-chain system, but it cannot verify its integrity or force its progression.
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7 Achieving the protocol goals

Table 1 highlights how each project has satisfied the protocol goals defined in
3.2. It is based on our code inspection in Appendix A and in the following we
explore the results in more detail.

7.1 Operator goals

No collateral to operate The collateral requirements are not required to facilitate
transfers, but to rate-limit who can become a sequencer or executor. All projects
do not require the sequencer to lock funds as it is not necessary in the name of
censorship-resistance.

An executor (and challenger) may be required to open a collateralized posi-
tion in both a fraud-proof system and a validity-proof system. In the former, the
stake should act as a deterrent to prevent an executor posting an invalid com-
mitment (Arbitrum and Optimism). As well, it should deter challengers from
initiating a challenge on a valid commitment with the goal to delay its confir-
mation (Arbitrum).

In both a fraud-proof and validity system, the stake should allow one honest
party to self-appoint themselves as an executor and to post a new commitment
that executes the majority of transactions. This is the case for all projects ex-
cept for StarkEx and ZkSync as they are permissioned systems, but it does not
hamper censorship-resistance as they do not support smart contracts.

Operational cost efficiency The fees charged on the off-chain system should cover
the financial cost of interacting with the bridge contract should be amortized
amongst all users. As mentioned throughout the discussion, it remains an open-
problem to fairly reward each set of agents in a decentralized setting and all
projects except for Arbitrum rely on a first-priced auction.

Unrestricted experimentation As explored in Appendix C, all projects have im-
plemented a virtual machine that extends beyond the capability of the EVM.
Arbitrum and Optimism can extend their functionality by implementing new
operation codes as solidity smart contracts. In ZkSync and Starkware, the EVM
is only concerned with verifying a validity proof and it is not aware of the virtual
machine details.

Proof of reserves The difficulty with previous attempts at proof of reserves
[28] was the complexity to implement it for private (and custodial) databases.
This is a default property for all validating bridges as the off-chain database is
public. Any user can verify the funds held by the bridge contract, the recorded
account balances in the off-chain system’s database and that all historical state
transitions are valid.
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7.2 User experience goals

Functionality Both Arbitrum and Optimism offer an EVM-compatible smart
contract environment and the subtle aspects of their implementations are dis-
cussed in Appendix C. Oasis is a dedicated platform for supporting the EVM
and Rust smart contracts. Both ZkSync and StarkEx offer Misc functionality
which we summarise to include transfers (and swaps). They have plans to sup-
port turing-complete smart contract environments as discussed in Appendix C.

No on-chain registration This goal is achieved for Arbitrum, Optimism and
ZkSync. While it should be removed in the foreseeable future, the current version
of StarkEx does require the user to register a STARK-friendly key with the bridge
contract before interacting with the off-chain system.

No transfer limits Unlike a state channel network, the operator does not need to
lock collateral with their users to facilitate payments. There are no inbound or
outbound capacity issues for any project and a user can send their entire balance
in a single transaction.

Enforce a transaction’s post-condition In Arbitrum and Optimism, a transaction
will fail if the post-conditions are not adhered to (similar to Ethereum). In
ZkSync and StarkEx, a sequencer can only include a transaction for ordering if
its execution will succeed. It remains an outstanding problem for a zk-friendly
virtual machine to process failed transactions.

Validate the pending database state All projects only allow the user to validate
the pending database state when the final ordering of transactions is sent to
the bridge contract. The sequencer is fully trusted to provide an accurate view
of the pending database state. As mentioned in Section 4.2, there are potential
solutions that can be adopted to reduce trust in the sequencer.

7.3 Security goals

In Table 1, we have split up the censorship-resistance property into sequencer
censorship and execution liveness. It is based on a code inspection which is
further explored in Appendix A.

Solving the data availability problem All projects except for Oasis and StarkEx
post the data to it by the underlying blockchain8. In Oasis and StarkEx, it relies
on a data availability committee. As discussed earlier, there is work towards
a hybrid approach of allowing users to decide on-the-fly whether to post data
on-chain or to keep it with the data availability committee [83].

8 StarkEx can support posting data on-chain and this is available in the dYdX deploy-
ment. However, the Immutable deployment we studied only relies on a committee.
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Solving the state transition integrity problem All projects implement a fraud
proof or validity proof system. Optimism plans to change their one-round fraud
proof to a multi-round fraud proof due to practicality issues impacting the max-
imum size of a transaction and to avoid publishing the intermediary state tran-
sition commitments as this can reduce the on-going operational cost [78].

Preventing sequencer censorship All projects except for Oasis have implemented
forced transaction inclusion via the bridge contract. We highlight that Opti-
mism’s implementation remains incomplete at the time of assessment (Septem-
ber 2021). In the case of Oasis, it relies on a round-robin leadership protocol
that eventually picks a single party to order the transactions for execution. Both
ZkSync and StarkEx cannot censor withdrawals, but the sequencer can prevent
the execution of a transfer (or trade) on the off-chain system.

Enforcing execution liveness All projects except for StarkEx and ZkSync rely
on the bridge contract allowing an honest executor to self-appoint themselves
and enforce the execution of a pending transaction. Only Arbitrum enforces a
minimum number of transactions to be processed. StarkEx and ZkSync do not
support smart contracts to hold user funds which allows them to implement the
on-chain exodus approach outlined in Section 5.3.

8 Conclusion

Our SoK has turned the spotlight on the validating bridge which is the corner-
stone for extending the underlying blockchain’s security to off-chain systems.
An organisation is still trusted to offer the fast-path for updating the widely
replicated database, but a permissionless set of executors can enforce the even-
tual execution of all transactions. In fact, we expect designs to emerge that will
constrain the sequencers such that they are not even trusted with transaction or-
dering and they will simply accept inbound transactions, follow a deterministic
ordering protocol, and then publish the final order for execution.

The motivation for organisations to adopt a validating bridge is threefold.
First, there is no restriction on the type of financial services that can be of-
fered by an organisation to its users. For example, StarkEx powers an NFT
(Immutable) and derivative exchange (dYdX), Reddit plans to launch its own
Arbitrum instance for community points [74] and Arbitrum One already hosts
over 80 projects (September 2021). Second, organisations no longer have the li-
ability of holding custody of their user’s funds. This can reduce the impact of
regulatory pressure as their service is only trusted with ordering transactions
and not with protecting the user’s funds from adversarial actors. Third, with
the rise of validity proofs, we expect the average financial cost for leveraging the
underlying blockchain’s security to reduce as the transaction throughput on the
off-chain system increases. Thus, we can scale transaction throughput without
sacrificing the underlying blockchain’s security.

Finally, as explored in Appendix A, off-chain systems built with validating
bridges are not restricted by the underlying blockchain. They can experiment
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with different smart contract languages, virtual machines, and transaction or-
dering protocols. In a way, it is making the original vision for sidechains as a
platform for experimentation a reality [6]. It is our hope that this SoK and the re-
search questions highlighted will help towards building bridges for a multi-chain
world.
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A Code inspection of validating bridge projects

We provide an overview of validating bridge implementations deployed in prac-
tice which includes Abritrum, Optimism, Oasis, StarkEx and ZkSync. As a word
of warning, all validating bridges and off-chain system designs are still evolving.
Each project’s implementation is a snapshot to evaluate its design, goals and
future direction. In our assessment, we perform a code inspection of their bridge
contracts to uncover how they solve the security goals for the data availability
problem, the state integrity problem and censorship resistance.

A.1 Arbitrum

Arbitrum is an optimistic rollup that originates from academic research[52],
although the implementation’s protocol has evolved. Our code inspection is based
on the following repository commitment[94]. We investigate the contracts:

– Inbox.sol Accepts transactions destined for execution on the off-chain system
and orders them for execution.

– SequencerInbox.sol A single sequencer can send transactions for ordering via
the fast-path.

– Rollup.sol9 Co-ordinates all bridge components, manages the executors stak-
ing process and maintains the canonical chain of commitments.

– Node.sol Instantiates a single commitment.
– Challenge.sol Manages the multi-round fraud proof for a single commitment.
– Outbox.sol Processes transactions that migrate from the off-chain system to

the underlying blockchain.

Data Availability All transaction data (including the user’s signature) is pub-
lished to the bridge contract via Inbox.sol. The inbox associates every transaction
with an Ethereum block height and this timestamp is used to order transactions
for execution. The SequencerInbox.sol allows the sequencer to set a transaction’s
timestamp within a restricted range and this is used to facilitate the fast-path
of transaction inclusion (i.e. up to 50 blocks in the past). This allows any user to
verify the final ordering of transactions and the final execution is a deterministic
process.

State transition integrity An executor creates a new unconfirmed commitment
(Node.sol) and moves their stake onto it via Rollup.sol. All participants validating
the chain can then view and verify this commitment. The commitment remains
in an unconfirmed state for a long period (1 week) to give ample opportunity
for anyone to verify the commitment and potentially challenge it. During this
time all stakers who agree with the commitment must move their stake onto it
via Rollup.sol. If a staker does not move their stake onto a new commitment,

9 An additional contract RollupUser.sol extends the functionality of Rollup.sol via a
delegatecall. We omit this detail.
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they can be deregistered by any other staker. At the end of this period, and if
all registered stakers have staked on it, then the commitment can be confirmed
(finalised). If at any time prior to this a staker perceives a commitment to be
invalid, they must post on-chain a rival sibling commitment, stake on it, then
open a challenge between themselves and any of the stakers currently staked on
the perceived invalid commitment.

Each challenge is contained within a new instance of a Challenge.sol which
enforces the multi-round challenge rules as described in Section 5.2. Each party
has a stop clock timer which is running during their turn, if they run out of
time then they forfeit. The challenge process eventually ends with the execution
of a single instruction to resolve the dispute, and the result is communicated to
Rollup.sol. Half of the stake of the losing party is burnt, the other half is awarded
to the winning party. The losing party is deregistered as a staker to satisfy the
constraint that in order for a commitment to be confirmed it must be staked on
by all registered stakers.

Censorship resistance To bypass the sequencer, any user can force inclusion
of a transaction via Inbox.sol and the transaction will be ordered for execution
after a fixed time period (i.e., after the sequencer’s fast-path time period has
expired). To guarantee liveness of execution, their implementation allows a user
to become an executor by staking funds in Rollup.sol and a commitment must
process a minimum number of transactions to ensure transactions are eventually
executed. Note there is an approve-list for executors at the time of assessment.

A.2 Oasis

Oasis is a layer 1 blockchain with a validating bridge mechanism built-in its
Proof-of-Stake consensus layer [96]. It uses a Tendermint-based consensus proto-
col for its consensus layer. Because it is not constrained by EVM compatibility
limitations, instead of a bridge EVM contract Oasis uses a Go-based bridge
module incorporated into the consensus layer [95]. The module serves as pro-
tocol endpoint for the discrepancy detection (DD)/discrepancy resolution (DR)
protocols for a committee-based validating bridge design. Additional modules
handle random beacons, the appointment protocol for committee election, etc.
Oasis’ validating bridge mechanism is designed to be general and can support
different VMs (called ParaTimes) concurrently, such as EVM-compatible VM
and Rust-based VM. The core of the implementation is in these files:

– go/api/commitment/pool.go Implements the consensus layer DD/DR logic.
Compares fast-path DD results and triggers slow-path DR if a discrepancy
is detected.

– go/consensus/tendermint/apps/roothash/roothash.go Handle DD/DR commit-
tee logic. Storage signature handling.

– go/roothash/api/commitment/executor.go Verify storage receipt signatures.
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Data availability Transaction data and system state are stored via a committee
of data availability providers. A threshold number of providers must sign the
storage roots to declare the data is indeed available, and the consensus layer
verifies signatures. In the future, this is planned to be extended to utilize erasure
coding to improve replication efficiency and other data availability layers as they
become available. Note that this separate storage system for data availability is
a logical separation. In practice, this can be run in different ways. If a separate
storage committee runs the storage system, then the data is effectively stored
offchain. However, it can also be deployed in a way that the consensus nodes at
the consensus layer runs the storage system, in this case the data is effectively
stored onchain.

State transition integrity The DD protocol used in Oasis should be viewed as
an error detection protocol and not an error correction protocol. The DD com-
mittee size is chosen so that the probability that all DD committee members are
Byzantine is negligibly small. Thus, when Byzantine members report a divergent
state root as the result of executing a batch of transactions, at least one honest
member is available to detect the error—the determination of the correct state
to accept is deferred to the DR protocol. This allows the DR protocol to use
more resources than the DD protocol, e.g., involving many more nodes in a vot-
ing protocol, so that the adversary should be unable to overcome the resource
limitations. One case of DR is to have the whole consensus committee to run
the re-execution in the DR protocol. An honest-majority DR protocol is what is
implemented in the code; of course, other DR schemes such as bisection could
also be used. The DD/DR execution is non-interactive from the viewpoint of
the consensus layer, since the bridge module does not forward the results to be
committed until DD/DR has successfully determined a correct state root.

Censorship resistance Oasis uses a per-epoch random choice of staked nodes to
act as executors and sequencers. Nodes serve in rotation as the sequencer, chooses
transactions to include in a block, and determines transaction order within the
block. Because the DD committee size is chosen so that not all members could be
Byzantine, within each cycle of rotation there will be at least one fair sequencer.

A.3 Optimism

Optimism is an optimistic rollup with a single-round fraud proof. They have
plans to move towards a multi-round fraud proof system due to issues with EVM-
compatibility and constraints imposed on the size of a transaction [78]. Our code
inspection is based on the single-round fraud proof system at commit[97]. We
note it will soon become obsolete as they are moving towards a multi-round
fraud-proof approach [78]. We investigate the contracts:

– OVM LibraryManager Admin-only feature to install various configurations for
the Optimism network including the sequencer.
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– OVM L1StandardBridge Processes deposits and withdrawals for ETH/ERC20
tokens.

– OVM CanonicalTransactionChain.sol Orders transactions for execution from
users and sequencers.

– OVM StateCommitmentChain.sol Allows a bonded sequencer to assert a new
commitment.

– OVM BondManager Manages the locked stake on behalf of executors.
– OVM FraudVerifier.sol Co-ordinates the fraud proof process for an asserted

commitment.
– OVM StateTransitioner.sol Takes as input a pre-state root and a transaction,

and transitions to a post-state root.
– OVM L1CrossDomainMessenger.sol Processes messages that migrate from the

off-chain system to the underlying blockchain(and vice versa).

Data availability All transaction data (including the user’s signature) is pub-
lished to the bridge contract via OVM CanonicalTransactionChain.sol. Any user
can enqueue a transaction for ordering, but due to incomplete functionality, only
the sequencer can force the final ordering of transactions.

State transition integrity The sequencer has priority for asserting a commitment,
but an executor can proceed after a fixed deadline. The sender needs to submit a
list of hashes (the state root of each transaction) to OVM StateCommitmentChain
and the contract will construct the commitment. There is a minimum of just one
transaction that must be processed in a commitment.

The contract OVM FraudVerifier.sol co-ordinates the fraud proof and a de-
tailed explanation can be found here[59]. To assist with the fraud proof, some
EVM operation codes (opcodes) have been re-implemented as smart contracts
and as a result developers must re-compile their solidity project with the opti-
mism compiler. The proof is non-interactive and the challenger can perform the
entire proof of fraud single-handedly. Generally speaking, the challenger needs to
submit a pre-state commitment to challenge a post-state commitment alongside
the transaction that was applied to the pre-state root OVM FraudVerifier.sol.
This deploys OVM StateTransitioner.sol which can be used by the challenger
to set up the state and accounts required by the OVM StateTransitioner.sol
to execute the transaction. The post-state for a transaction is generated in
OVM StateTransitioner.sol and this is checked against the initial (post-state) com-
mitment posted by the executor. If it is different, then fraud is confirmed and the
commitment is rejected. As well, the executor who supplied the fraudulent state
root is fully slashed. All pending commitments must form a canonical chain and
rejecting an earlier commitment will reject all dependent commitments.

In the current implementation, this fraud proof mechanism has imposed com-
putational limits on the size of a rollup transaction as it must be re-executable
on Ethereum.

Censorship resistance A user can enqueue a transaction for ordering, but they
cannot force the inclusion of a transaction for execution as the implementation
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is not complete. In terms of execution liveness, there does not appear to be an
approval-list for executors and anyone can stake funds via OVM BondManager
to become executor. An executor is only forced to execute at least one trans-
action which does not necessarily guarantee execution liveness. In the current
implementation as a short-term measure, the sequencer has priority to post a
commitment and it is possible for the sequencer to continuously publish com-
mitments such that an honest executor cannot participate.

A.4 StarkEx

StarkExchange (StarkEx) has a validating bridge and relies on validity proofs.
We inspected the code used by Immutable which is not a rollup and instead a
committee is responsible for making the data publicly available. Furthermore,
it supports trading assets, but not general smart contract functionality. Note
the role of sequencer and executor is combined. We investigate the following
contracts:

– Committee.sol Accepts a list of signatures from the data availability com-
mittee.

– Escapes.sol Facilitates an on-chain exodus if the vault is frozen.
– FullWithdrawals.sol Request withdrawal to be processed by sequencer.
– Operator.sol Installs (and removes) a single operator that is a hot wallet for

the StarkEx service.
– Users.sol Associates a user’s ethereum account with a stark public key.
– GpsStatementVerifier.sol Responsible for verifying a STARK proof
– UpdateState.sol Responsible for updating the state root (if the STARK proof

is verified).
– FactRegistry.sol A fact is a statement that is considered true. For example, a

contract will verify a STARK proof to consider a commitment as well-formed
and the commitment can be stored in the fact registry. [45]

Data availability A committee of data availability providers are installed in
Committee.sol. A fixed number of committee members must sign a message to
attest that the data is indeed available and the signatures are checked by the
contract. If the threshold of signatures is reached this result is stored as a data
availability fact in a FactRegistry.sol for later use. Note this introduces a stronger
trust assumption than outlined in Section 3.1 as the bridge contract cannot
independently verify that the data is truly available.

State transition integrity Anyone can publish STARK proofs which are verified
and, if valid, stored by the GpsStatementVerifier.sol as a fact. The sequencer may
then publish a new commitment to UpdateState.sol which checks that a data
availability fact and a proof verification fact have both been stored, and if so
accepts the commitment as the new state root of the chain. When a new root is
added to UpdateState.sol on-chain operations associated with the state update
are also processed, such as withdrawals and deposits. Only the sequencer may
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call UpdateState.sol, and they may only do so if the contract has not been frozen.
Note, thanks to the validity proof, there is no requirement for a challenger to
assist the bridge contract.

Censorship resistance A user can request to withdraw their funds via FullWith-
drawals.sol and it must be processed in a future commitment by a fixed deadline.
If the withdrawal is not processed by the deadline, then the user can freeze the
entire system in Escapes.sol. This freezes the off-chain system’s state for at least
one week and all users can proceed to withdraw their funds via an on-chain
exodus.

A.5 ZKSync 1.0

A validity proof rollup for value transfer of ETH, ERC20 tokens and NFTs. It
is implemented using SNARKS and there is an upgrade coming that plans to be
EVM-compatible [63]. We investigated the following contracts:

– ZkSync.sol Core functionality for processing deposits, withdrawals and new
state commitments (including verifying the validity proof).

– AdditionalZkSync.sol Additional functionality related to freezing ZKSync and
permitting an on-chain exodus.

Data availability All transaction data is publicly available on Ethereum and it
is published in ZKSync.sol to create the next state commitment. This data is
compressed which includes the from account id, to account id, token id, packed
amount and fee. It does not include the signature and all identifiers represent
an index in the database to reduce bytesize [65].

State transition integrity All transactions are batched into blocks and there
are three steps to confirming a block. First, the sequencer is required to post
the transaction data and ZkSync.sol will form a state commitment. Second, the
sequencer is required to post a validity proof to prove that the state commitment
is well-formed and valid. The sequencer is required to confirm the block that
will execute all pending operations for the block such as withdrawal requests
or changing the user’s public key (i.e., users have a distinct public key that is
separate to their Ethereum account). Because of the separate steps, it is possible
for a sequencer to post a block of transaction data that cannot be validated. The
sequencer can revert any pending blocks in order to publish another block that is
valid. Note, thanks to the validity proof, there is no requirement for a challenger.

Censorship resistance A user can request a full withdrawal of their funds in
ZkSync.sol and this sets a deadline for the transaction to be included in a future
block. Assuming the sequencer has ignored the withdrawal request and they
have not processed transactions in the on-chain priority queue, then the user
can activate an on-chain exodus mode that freezes the network based on the
last accepted commitment. All users can proceed to withdraw their funds using
the functionality in AdditionalZkSync.sol. This mode was previously triggered on
Ethereum’s Ropsten test network [61].
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B Data availability and gas costs

We consider the representation of data that is used to recompute the widely
replicated database and afterwards we consider the gas costs for posting this
data to Ethereum.

B.1 Data type

An ethos in the community is to scale the network’s transaction throughput
without increasing the resources required by the verifier (i.e., the cpu, storage and
memory resources remain the same). This requires rollups, that post all data to
the Ethereum network, to minimize the data’s bytesize to avoid over-consuming
the network’s bandwidth. In regards to the data, there are two components that
should be considered:

– Validity. The evidence for why the data is correct and it should be processed.
– Execution. The data represents a set of instructions on how to update the

off-chain system’s database.

An example is a transaction with a function, arguments and a signature. The
signature is why the data is valid as it confirms the user’s identity and this can
be used to verify if they have a sufficient balance to cover the transaction fee.
The functions and arguments are the execution as it can be processed to update
the off-chain system’s database. As we will see next, how the bridge contract
verifies a commitment’s integrity will impact the type of data that is published:

Re-execution validity proof can only compress data In fraud proof systems, the
bridge contract may re-execute a disputed state transition. To determine if it is
valid, the bridge needs to verify why the state transition is valid (i.e., the user’s
signature) and its execution (i.e., the execution’s asserted post-state is correct).
It is possible to reduce the quantity of signatures posted by the sequencer via
BLS signature aggregation [59]. This only represents a reduction in the data size
and it does not remove the requirement to post why a user-generated transaction
is valid. On the other hand, to reduce byte-size of data that represents the set
of instructions to execute, so far it appears users may need to co-operate off-
chain and batch their transactions into a single execution. A simple example is
to combine several swaps into a single trade and some DeFi projects such as
CowSwap [43] which already offers this service on Ethereum.

Zero knowledge proofs can aggregate state updates A zero knowledge proof can
remove the need to post the validity aspect of the data (i.e, user signatures) as
it is bundled into the proof. This is implemented in ZkSync as the sequencer
only publishes the transfer details (and not the signature) [65]. Be that as it
may, a zero knowledge proof can also replace the transaction data with a list
of state updates (state diff) and aggregate the impact of multiple transactions
into a single state update. As such, the details of every transaction can remain
off-chain and this is implemented in StarkEx. For example, hundreds of oracle
price updates can be reduced to a single state update [8].
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Protocol Deposit Data availability Confirm commitment Withdraw
Arbitrum 96,041 5,155 per tx 923,000 162,392
Optimism 209,787 4,118 per tx 1,112 per tx 516,088
StarkEx 116,956 86,199* 3,243,418* 88,279
ZKSync 62,599 967 per tx 576,691 15,000

Table 2: Ethereum gas costs for operations performed by a validating bridge.

B.2 Gas costs for data

For Ethereum-based validating bridges, gas is the ultimate resource bot-
tleneck and it is a common metric that can be used to measure their scaling
efficiency. In the following, we evaluate the gas costs in Table 2 which highlights
for each project the gas costs for depositing, withdrawing, data availability and
confirming a new state commitment.

Deposits and Withdrawals A withdrawal in Optimism is expensive as a user
provides an inclusion proof to demonstrate their entitlement before withdrawing
coins. ZkSync is the cheapest as it amortized the gas costs by processing all
withdrawals in a single transaction. The remaining project’s have gas costs that
are expected for a deposit or withdrawal.

Data availability Since the sequencer is responsible for posting transaction data
to the bridge contract, we have implemented a script10 that computes the average
gas used in Arbitrum, Optimism and ZkSync. The average gas for a transaction
takes into account any user-generated transaction processed by the off-chain
system and it does not differentiate whether it is a transfer, deployment, or
withdrawal request. As we can see, Arbitrum and Optimism are roughly the
same at 4-5k gas and the average ZkSync transaction is 850 gas as it does not
support smart contract functionality.

Confirm commitment Arbitrum requires two transactions to assert the commit-
ment (748k gas) and to confirm the commitment after the challenge period (175k
gas). It is higher than necessary as every commitment is a new instantiation of a
contract called Node.sol alongside storing a list of values. We have not taken into
account the gas costs for executors to stake on a new commitment in Arbitrum.
Optimism requires an intermediary state hash to be published for every trans-
action and this is used to compute the final commitment. There is no explicit
cost to finalise a commitment as it is implicitly accepted by the bridge contract
after the challenge period has expired. ZkSync verifies a single validity proof
(PLONK) and this costs 576k gas. Overall, it appears that Arbitrum will even-
tually be cheaper than Optimism if a single commitment covers more than 930
transactions and surprisingly asserting a commitment in Arbitrum costs more
than verifying a validity proof in ZkSync.

10 Scripts can be found at https://github.com/fc22submission/commitchain-scripts
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Special case: StarkEx We have implemented a script to compute the average gas
cost for data availability and confirm commitment based on the deployment of
Immutable.11 However, we have added an asterisk in Table 2 as it is not fair to
compare the gas costs with other projects. First, the immutable contracts rely
on a data availability committee and the 86k gas reflects verifying the respective
signatures. Second, there is another project called dYdX which does post all data
to the underlying blockchain, but as discussed in Section B.1 the data represents
state updates that can be applied to the database and not individual transac-
tions. Third, several smart contracts are involved in verifying a STARK proof
including FriStatementContract, MemoryPageFactRegistry, MerkleStatementCon-
tract and GpsStatementVerifier as there is no native support in the EVM. Within
two weeks of our analysis (September 2021), all Starkware projects including
Immutable upgraded to StarkEx V3 which allows a single prover to prove the
computation for all projects together and thus amortize the cost [9]. Based on
these findings, we have proposed a measurement study in Section 6.1 to evaluate
the potential gas-savings of a validity proof system like StarkEx compared to
the other projects.

C Virtual machines and EVM-compatible smart
contracts

Virtual machine re-execution on Ethereum In a fraud-proof system, the virtual
machine for the off-chain system must be designed such that the bridge contract
can pinpoint and execute a disputed state transition. As discussed in Section A,
Arbitrum pinpoints a single instruction for execution whereas Optimism executes
an entire EVM-native transaction. The virtual machine for both projects must
have a compatible implementation that is executable by the Ethereum Virtual
Machine (EVM). Compatibility includes how to execute every operation code of
the virtual machine and how to provide the bridge contract with a copy of the
execution context (i.e., state) prior to the execution step.

In Arbitrum, the Arbitrum Virtual Machine (AVM) forms the basis for ex-
ecution and proving fraud. It has at least two implementations: one that is run
off chain by Arbitrum nodes for executing all transactions and one that is im-
plemented in Solidity for the bridge contract. We are only concerned with the
Solidity implementation. They have re-implemented every operation code to sup-
port a fully virtualised environment that manages memory and tracks resource
usage when executing transactions [4]. This environment provides the internal
context to prove the execution for a single step of the AVM. One advantage of
defining a new virtual machine is that the VM context can be optimised for
executing the proving step in the bridge contract. For example, the pinpointed
state transition can be a single operation code as the bridge contract has access
to the memory stack and execution trace, which is not typically accessible for
the EVM. Another is that Arbitrum can offer new operation codes (and func-
tionality) beyond what is supported by the EVM. An example of where they’ve

11 An NFT project that is using StarkEx under the hood.
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made use of this is to write new opcodes for all Arbitrum node operations that
require proving, such as reading from the Inbox contract. This means that many
operations of the Arbitrum node, not just transaction execution, can be proven
correct by fraud proofs. The downside of the Arbitrum approach is maintaining
duplicate implementations of the AVM as there is a danger the execution does
not match up amongst them (i.e., including bug-for-bug). This can result in a
slashing event by the bridge contract.

In Optimism, the Optimistic Virtual Machine (OVM) is a minimal adap-
tation of the EVM. The OVM tries to re-execute as much of the transaction
as possible in the same environment (EVM) on both L1 and L2 networks.
However since it’s not possible for them to re-execute all opcodes due to the
differences in state, they need to replace some opcodes with synthetic ones
which mimic the behaviour of their EVM counterparts (OVM). One example
includes block.number as the off-chain system and Ethereum will return differ-
ent block heights [80]. This is because the global state must be synchronised in
order for the transactions to yield the same responses. To resolve the issue with
block.number, they have implemented a function call to one of Optimism’s con-
tracts (OVM ExecutionManager.sol) which contains a pre-populated value for
the block number. The same process is used for all opcodes that access global
state. As well, other opcodes such as CALL, DELEGATECALL, etc are imple-
mented as Solidity smart contracts as they need to invoke contracts deployed
for Optimism (and not Ethereum). The benefit of the above approach is that
most existing infrastructure can be re-used by the team and it is still possible to
implement new operation codes as smart contracts. Because Optimism tries to
execute as much as possible in the EVM, it cannot access the intermediary state
of a transaction and this is why the fraud proof re-executes the entire transac-
tion. Note, they are currently in the process of changing the OVM to remove
the need for implementing a range of operation codes as smart contract function
calls including the execution manager [79].

EVM-compatible smart contracts for fraud-proof systems Arbitrum have imple-
mented a new language, Mini, which compiles to AVM code. To support EVM-
compatible smart contracts, they have implemented an EVM to AVM compiler
in Mini which allows the sequencer to accept a signed EVM transaction, transpile
it to AVM code, and execute it. All steps are provable and executable by the
bridge contract in the event of a dispute. The downside of Arbitrum’s approach
is the complexity of maintaining a provable transpiler and operating system
on top of the EVM. Some existing tooling (such as the JSON RPC command
debug traceTransaction) may act in an unexpected way.

Optimism, at the time of writing (September 2021), requires all EVM smart
contracts to be compiled using an adjusted Solidity compiler that generates OVM
bytecode instead of EVM bytecode. Because some opcodes in the OVM bytecode
are replaced by contract calls, transactions that run on Optimism have a different
(and greater) gas footprint than its corresponding EVM code. As a consequence,
a transaction that can be executed within the Ethereum block limit may no
longer be possible when it is executed by an OVM-compiled smart contract.
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This impacts Optimism’s single-round fraud proof system which requires all off-
chain transactions to be fully executable by the bridge contract. To take this
into account, all transactions running on Optimism have a lower gas limit than
Ethereum. Another issue is that Ethereum has a 24KB max contract byte size
and a smart contract that is transpiled to OVM bytecode may become too large
for deployment. This may require pre-existing smart contracts to be split into
sub contracts before deployment [92].

Verifying zero knowledge proofs in the EVM The Ethereum community have
upgraded the EVM [87,101,14,3] to natively verify SNARKs [10] and this has
substantially reduced the cost of verifying a proof.12 SNARKs are a form of
verifiable computing that allows the off-chain system’s executor to process all
transactions and to provide a succinct proof that proves the computation was
performed correctly. The bridge contract is only concerned with checking the
succinct proof’s validity and it will not learn anything about the virtual machine
except that the computation was performed correctly.

The off-chain’s virtual machine is never re-executed by the EVM and instead
the goal is to build a virtual machine whose computation can be efficiently proven
with a zero knowledge proof (zk-friendly). Most SNARKs represent computation
as an arithmetic circuit (sometimes called constraints) over a prime finite field
and not all computation can be efficiently represented as an arithmetic circuit.
The issue often boils down to the fact that a computation may operate over
a different field than the one supported by the SNARK and mixing different
fields incurs additional computation. For example, sha256 and other symmetric
cryptographic protocols are computed over a binary field (boolean operations)
and this incurs an overhead of embedding the boolean field in the prime field
[107]. At the same time, SNARKs are not turing-complete and how to represent
unbounded loops requires special consideration such as using a recursive snark,
a proof carrying data, or just bounding the total iterations and executing the
loop’s body an exact number of times.

EVM-compatibility for zk-friendly virtual machines The circuits for ZkSync 1.0
and StarkEx are implemented natively while both teams worked towards a zk-
friendly virtual machine (i.e., efficiently executed within a proving system). The
first approach by ZkSync called Zinc[42] was Turing-incomplete (no loops) and
it was designed based on TinyRam [11] which is a reduced instruction set com-
puter. Before Zinc was released on mainnet, ZkSync decided to pivot and pursue
a turing-complete architecture called zkEVM [64]. On the other hand, Stark-
Ware pursued a turing-complete CPU architecture called Cairo [44]. As of writ-
ing, zkEVM is not yet released and while Cairo has been adopted by a few
projects (including dYdX which has, at least once, eclipsed the trading volume
of Coinbase [58]). Compared to Solidity, the Cairo language has not yet gained
significant transaction by the smart contract developer community. We suspect

12 For example, [3] highlights the gas cost for AZTEC confidential transaction was
reduced from 820k gas to 197k gas
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it is because the environment is not compatible with the existing EVM (and
tooling).

ZkSync and Starkware are working towards EVM-compatibility for their
smart contract environment. However, the EVM architecture has specific op-
codes which are not natively zk-friendly such as loops, boolean-based crypto-
graphic hash functions and composability amongst smart contracts. Both projects
have implemented optimised circuits for specific operations to avoid the compiler
introducing additional overhead. For example, zkEVM will replace keccak256
with a collision-resistant hash [63] and later re-introduce it as a precompile,
whereas Cairo have implemented keccak256 in Cairo (although it will default to
Pedersen hash when possible). The final goal is to allow smart contract devel-
opers to write code in Solidity and a transpiler will convert it into source code
that is compatible with the zk-compiler. For example, Nethermind is working
with the Starkware team to convert Solidity code into Cairo [100].
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